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COATING OF A NON-NEWTONIAN FLUID ONTO A MOVING SURFACE 

V. I. Baikov, Z. P. Shul'man, and K. Engel'gardt UDC 532.51 

The application of a coating of non-Newtonian fluids to a moving surface was considered 
in [1-4]. These studies are based on the approach proposed in [5, 6], which is restricted 
by the requirement that the thickness h0 of the coated film be small as compared with the 
capillary constant (o/pg) 1/2 (p is the density, g the free-fall acceleration, and o the sur- 
face tension). Experimental studies of fluid coating [i, 7] have revealed substantial dif- 
ferences between the theoretical and experimental data. Thus at present we lack a theory 
that satisfactorily describes the coating of non-Newtonian fluids. In this article such a 
theory is developed for fluids with nonlinear viscosity. 

i. Let us consider the process of coating a liquid onto a vertical surface moving at 
a constant speed (Fig. i). Because of the action of gravity, the withdrawn plate entrains 
only part of the liquid it sets in motion. Accordingly, on the free surface there is a stag- 
nation line (perpendicular to the plane of the drawing) where the velocity isequal to zero 
and the flow direction branches [8]. The streamlines passing through the stagnation line 
separate the wall zone of liquid entrained by the wall from that remaining in the bath. 

We take the stagnation line as the origin and direct the x axis vertically upward in 
the direction of motion of the surface, and the y axis at right angles to the latter. The 
flow region bounded below by a plane perpendicular to the wall and passing through the stag- 
nation line and tending upward to the constant thickness h 0 we will call the dynamic menis- 
cus zone. Clearly, the length L of the dynamic meniscus zone considerably exceeds its width 
h0; this naturally gives rise to the small parameter e = h0/L << I. Consequently, the varia- 
tion of the characteristics along the x axis is much weaker than in the transverse y direc- 
tion, i.e., the derivatives with respect to y are much greater than those with respect to 
x. Making the appropriate estimates [9] in the equations of motion and the boundary conditions, 
in the region of the dynamic meniscus we obtain 

a~/av § p g  - -  ap/ax = o, ap/ay = o ;  ( 1 . 1 )  

u =  Uwhen g = O ,  ~ = O w h e n g = h ;  (1 .2 )  

P - -  Po  = ~ ~  g = h .  
(1.3) 

h 

We represent the continuity equation in integral form: Q = ~udy = const. Here �9 is the 
0 

shear stress due to friction; h is the coordinate of the free surface of the liquid; p is 
the pressure in the liquid; u is the x component of the velocity vector; P0 = const is the 
pressure in the gas; and Q is the rate of flow of the liquid in the film. 

Integrating (i.i) with respect to y and using (1.2) and (1.3), we find 
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Fig. 1 

= --(pg - -  od~h/dU)(h - -  g). ( 1 . 4 )  

As t h e  r h e o l o g i c a l  e q u a t i o n  o f  s t a t e  we w i l l  t a k e  t h e  w i d e l y  u s e d  power  law 

l ~ l n-~ ~ ( 1 . 5 )  

where  k i s  t h e  c o n s i s t e n c y  c o e f f i c i e n t ;  and n i s  t h e  p a r a m e t e r  c h a r a c t e r i z i n g  n o n - N e w t o n i a n  
behavior. As a result of the substitution of (1.4) in (1.5) and integration using the first 
of equations (i.i), we obtain 

1 

u=U--Y-4-i- ~d~"/ LhT -- (h -- u)~ J" (1.6) 

Here the fact that in the dynamic meniscus zone 3u/~y < 0 has been taken into account, We 
write the flow rate 

h 2~+1 t ~l[n 
Q =  u d y = U h , _ 2 - ~ - l h  - ~ - ~ ]  ( 1 . 7 )  

0 

In the region of constant film thickness h 0 all the derivatives with respect to the x coordi- 
nate are equal to zero; then 

{pg ~2.+1V/~ 
Q "= Uh~ - -  2n q- i \ ~ '~~ ] �9 (1~ 8 ) 

S u b s t i t u t i o n  o f  ( 1 . 8 )  i n  ( 1 . 7 ) ,  and g o i n g  o v e r  t o  t h e  d i m e n s i o n l e s s  v a r i a b l e s  and p a r am-  
e t e r s  

1 

- h { p~ V+~ k H = h = r = Ca = u hF" 
ho., ~o o ~k-fz) , ~ ( 1 . 9 )  

leads to an ordinary nonlinear differential equation for the film thickness H in the dynamic 
meniscus zone: 

n+ l ]n  ,H2n+I d3H 
Tn+IH2~+I + J .  ( I  i0) Ca dz a "-  

T h i s  equation determines the shape of the film surface in the region of variation of h from 
h 0 to hs, where hs is the thickness of the liquid layer at the stagnation line. The inte- 
gration of (l.i0) produces three arbitrary constants. These can be found from the condition 
governing the behavior of the solution as z § ~: 

H - e - i ,  dH/dz--+O, d2H/dz~-+O. ( 1 . 1 1 )  

E q u a t i o n  ( 1 . 1 0 )  c o n t a i n s  a n o t h e r  unknown, n a m e l y  h0,  which  i s  l i n k e d  w i t h  t h e  f l o w  r a t e  by 
r e l a t i o n  ( 1 . 8 ) .  I n  o r d e r  t o  c a l c u l a t e  t h i s  q u a n t i t y ,  we d e t e r m i n e  t h e  s h a p e  o f  t h e  l i q u i d  
s u r f a c e  be low t h e  s t a g n a t i o n  l i n e  and t h e n  j o i n  i t  t o  t h e  s h a p e  o f  t h e  dynamic  m e n i s c u s .  The 
j o i n i n g  c o n d i t i o n  i s  t h e  m i s s i n g  c o n d i t i o n  n e e d e d  t o  c a l c u l a t e  h0.  
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First we find the position of the stagnation line. By definition, on that line the ve- 
locityuly= hof the film surface is equal to zero; then, starting from (1.6), 

n+......_l (~  T--~ x~ d3hs~ 1In 
0 = U  n ~ l h ,  ~ _ -  . ( 1 . 1 2 )  

On t h e  o t h e r  hand ,  i n  v i ew  o f  t h e  c o n s t a n c y  o f  t h e  f l o w  r a t e  Q i n  e a c h  c r o s s  s e c t i o n  o f  t h e  
film from (1.7) and (1.8) there follows 

2n+l ( 
n~ --~ U n (i 13) 

Thus ,  we h a v e  a s y s t e m  o f  two e q u a t i o n s  ( 1 . 1 2 )  and ( 1 . 1 3 )  w i t h  two unknowns hs  and pg - o d 3 h s /  
dx 3. S o l v i n g  f o r  hs  and g o i n g  o v e r  t o  t h e  d i m e n s i o n l e s s  v a r i a b l e s  ( 1 . 9 ) ,  we o b t a i n  t h e  p o s i -  
t i o n  of the stagnation line 

He = (2n + 1)/n- T(n+1)m, (i. 14) 

where Hs = hs/ho �9 

2. Let us consider the region of flow of the liquid located below the stagnation line, 
which remains in the bath. Here the space derivatives of the velocities and stresses are 
much smaller than in the dynamic meniscus zone, and in the equations of motion and boundary 
conditions they can be neglected as compared with the forces of gravity and surface tension. 
Then the shape of the surface is given by the relations 

OplOxl -J-- pg = O, OplOy = 0 ( 2 . 1 )  

with boundary conditions 

p--p0=--a~[ +~d-~l) j when y=h. (2.2) 

Here the axis x~ coincides with the x axis, but is reckoned from the horizontal surface of 
the liquid in the bath (see Fig. i). From (2.1) and (2.2) we obtain the equation 

of the equilibrium shape of the liquid surface in the gravity field. We will call the zone 
below the stagnation line the static meniscus region. 

For a stationary wall the equation (2.3) should be integrated with the conditions 

d h / d x l ' + - - ~ 1 7 6  ~ x 1 " + O  ( 2 . 4 )  

(the surface of the liquid remote from the plate is horizontal), and 

h = 0 when x 1 = ~ .  ( 2 . 5 )  

Here, in the case of a completely wetted wall x o the height to which the liquid rises up the 
wall under the action of capillary forces is found from 

d h ~ x l  = 0 when x 1 = ~ .  ( 2 . 6 )  

I n  t h e  c a s e  o f  a moving w a l l  i t  i s  n e c e s s a r y  t o  t a k e  i n t o  a c c o u n t  t h e  e f f e c t  o f  t h e  e n -  
t r a i n e d  f i l m  on t h e  s h a p e  o f  t h e  s u r f a c e  i n  t h e  s t a t i c  m e n i s c u s  z o n e .  We assume t h a t  t h e  
static meniscus is in contact not with a solid wall but with a liquid film of thickness h0. 
Then conditions (2.4) and (2.6) remain unchanged, while (2.5) takes the form 

h = h0 when x 1 = x0. ( 2 . 7 )  

I n t e g r a t i n g  ( 2 . 3 )  w i t h  a l l o w a n c e  f o r  ( 2 . 4 ) ,  ( 2 . 6 ) ,  and ( 2 . 7 )  and g o i n g  o v e r  t o  t h e  d imen-  
s i o n l e s s  q u a n t i t i e s  ( 1 . 9 ) ,  we f i n d  
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]/gV~ _+ di (4 --  Ca r~+lzl) ~/2 + T In 2 - ( 4 -  Ca r~+~)  ~/2 (2. (c~ r~+') '/~ (H -- I) = 15-- ~ i. , 6 ) 

where z I = xl/h 0. 

3. In order to determine the thickness T of the coated film, we join solution (2.6) 
for the static meniscus zone and the solution of the dynamic meniscus equation (I.i0). Ob- 
viously, on the stagnation line the stress in the liquid must be the same whether determined 
from the dynamic or the static zone. Then, starting from (1.3) and (2.2) and equating the 
right sides, we obtain the joining condition 

d2h 
~ =~-~ ~,~j j 

which, using (2.3), we write in the dimensionless form 

d-~/m = Ca rn+Xzl ['s" ( 3.2 ) 

Thus, the procedure for solving the problem is as follows. We assign the parameter Ca 
and select a certain starting value of T; from (1.14) we obtain Hs, and then numerically (for 
example by the Runge-Kutta method) integrate Eq. (i.i0) with conditions (i.ii). For integra- 
tion purposes it is necessary to know the asymptotic behavior of the solution as z + ~. For 
sufficiently large z we can put 

g(z) = t + ~), 

where ~(z) is a small quantity. Substituting (3.3) in Eq. 
terms of the first order in y, we find 

(3.3) 

( 1 . i 0 )  and r e t a i n i n g  o n l y  s m a l l  

dS?/dz 3 = - - (2n  q - ~ c a r ( n " - l ) m ( l  - -  r<n+l)/~) ?. 

Hence ~ = A exp  ( - B z )  and ,  c o n s e q u e n t l y ,  

dH/dz = - - B ? ,  d2H/dz 2 = B27, ( 3 . 4 )  

where  B = [ ( 2 n  + 1 ) C a T ( n 2 - 1 ) / n ( 1  - T ( n + l ) / n ) ] l / 3 .  C o n d i t i o n s  ( 3 . 3 )  and ( 3 . 4 )  a r e  t h e  i n i t i a l  
d a t a  f o r  t h e  i n t e g r a t i o n  o f  ( 1 . 1 0 ) .  By c a l c u l a t i n g  t h e  s e c o n d  d e r i v a t i v e  d2H/dz 2 f o r  H = 
Hs and then determining from (2.8) the value of the coordinate z I at which H = Hs, we check 
the satisfaction of joining condition (3.2). By a simple iteration method we find the value 
of T satisfying this condition for the given Ca. 

The results of the calculations are reproduced in Fig. 2, where they are compared with 
the most accurate experimental data obtained in [7, i0]. The theoretical curves I-IV cor- 
respond to n = i, 0.8, 0.6, and 0.4. The points i (n = i) are the data of [9], and the points 
2-7, which correspond to n = 0.61, 0.545, 0.575, 0.367, 0.374, and 0.393, are the results 
of [7]. 

For a Newtonian liquid (n = i) there is good agreement between experiment and theory 
over the entire interval of withdrawal rates Ca. We note that when Ca > 3 we have T = 0.78 
or h 0 = 0.78(pU/pg) I/2 (~ is the dynamic viscosity), i.e., the film thickness ceases to de- 
pend on the surface tension. If Ca < 3, then the surface tension has a substantial influ- 
ence on the thickness of the coated layer T. 

Figure 2 shows that curves 1-IV for Newtonian and pseudoplastic fluids lie very close 
together in the region of small and intermediate (Ca < i) withdrawal rates and separate sig - 
nificantly only at large (Ca > i) withdrawal rates, when it is possible to neglect the ef- 
fect of surface tension. The experimental points 2-7 for pseudoplastic fluids are not con- 
sistent with the curves Iii and IV predicted by the theory. We will examine the reasons for 
this discrepancy. 

4. As is known, power law (1.5) does not describe the rheologica! behavior of a fluid 
at low shear rates. In the opinion of the authors of [2], this feature of the power-law model 
may prove important in withdrawal problems, where in the dynamic meniscus zone near the free 
surface of the fluid the shear rate is very low. We will make use of the Ellis model 

Ou/Og = ~(a 4- b]~l ~-1) (4.1) 
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(a, b, and a are rheological parameters), which adequately describes the viscous properties 
of non-Newtonian fluids over a broad range of shear rates (much greater than in the case of 
the power law) and can be employed in the region of low shear stresses. Basing ourselves 
on the above approach to withdrawal problems and using model (4.1), we obtain: 

for the dynamic meniscus 

~+I ~+2 T~+I H 3 d3H T 1 H [ d3H~ ~ T ~ . ~ . . ~  . L I  t (4 2) 
C a T  2 d-~z 87  = I - - H - - ~ ( I - - H  3 ) - ,~ -@-~  '3Ca dz----~ - -  

for the stagnation line 

, .  

where 
1 

T = h o ( a p g / U ) 7 ;  T~ = h o [(pg)~ b/U]~4-i;  Ca = ; Ca~ = ~, b--~ga--- / ; Ca 1,2 = Ca~T1 ~ . 

In Fig. 3 we have plotted the results of calculations basea on Eqs. (2.8), (3.2), and 
(4.2) and the experimental points of [i] for a 0.16% aqueous solution of Carbopol, whose theo- 
logical behavior is described [ii] by the power law (n = 0.56, k = 0.6 N'secn.m -2) and the 
Ellis model [~ = 2.01, a = 0.129 m 2 (N'sec) -I, b = 0.014 m2a.N-~.sec-1]. The theoretical 
curves (I denotes the power law, II the Ellis model) for the film thickness coincide almost 
completely and lie considerably above the experimental data. This indicates the legitimacy 
of using the simpler power law instead of the three-parameter Ellis model in withdrawal prob- 
lems and the need to seek another reason for the discrepancy between theory and experiment. 

5. Experiments [12, 13] on the gravity flow of films of polymer solutions along an in- 
clined plane showed that there is a wall effect. In the immediate vicinity of the wall the 
moving medium separates, forming a very thin wall layer with reduced polymer concentration 
as compared with the rest of the flow, which slides over this layer as if it were a lubri- 
cant. In the capture process the film is entrained by the moving surface and, at the same 
time, flows along it under the action of gravity. It is therefore natural to assume [14] 
that the entrainment of rheologically complex media involves a wall effect. 

Taking this into account, we will construct a quantitative theory of liquid capture. 
We assume that the effective rate of slip uc at the wall is uniquely determined by the local 
shear stress at the wall ~w [12]. We assume a simple linear relation uc = BITwl, where 
(the slip coefficient) depends on the type of polymer and its concentration. 

Then the dynamic meniscus of a power-law fluid is described by Eqs. (1.1)-(1.5), except 
for the first of conditions (1.2), which now takes the form u = U - Uc at y = O. Carrying out 
the calculations in the same way as above, for the dynamic meniscus we obtain 
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= _ _  p g  n , 

e = (u - ~o) ho ~ - +  ~ - hg ~+~ ~/"= (u  - ,.o) h "~' ~"+~ ( ~  ~' d~ ''~ 
2,, + ~ ,,-# -# T~3 ] , 

h~"+1)/" {pg\I/~ 
a ~ = 2 " + ~ h o  v - . o  i -E)  �9 

After some simple manipulation, going over to the dimensionless quantities of (1.9), we find 
the equations for the film thickness, slip rate, and stagnation line, respectively: 

,,+_~l, 
,,~+~ d~,, H , ~ + , ~ . + ~ _  2~+__/I ( i  - -  ~ )  ( H - -  ~) + T ~" J ,  

Ca dz a 
( 5 . L )  

[~ "--+I l ~ ,,+~ / 
~H~" = F ( 1 - - ~ o ) ( q - - t ) +  r ~ J, ~z~ =2~+~  r ~ / ( t _  ~ i . , ) .  ( 5 . 2 )  

Here Vc = uc/U, F = SkUn-lh~ n are the dimensionless effective slip rate and slip coefficient~ 

Taking into account the wall effect, as distinct from the dynamic meniscus, does not 
affect either the shape of the surface (2.8) in the static meniscus zone or the joining condi- 
tion (3.1). 

The solution algorithm remains as before. We assign the parameters Ca and F and select 
a starting value of T. For the boundary conditions (i. Ii), using relation (5.2), we inte- 
grate Eq. (5.1) and check the satisfaction of joining condition (3.2) by means of the solu- 
tion (2.8). By iteration we find the value of T for which condition (3.2) is satisfied. 
The results of the calculations are presented in Fig. 2 [curve V for n = 0.6, F = I; curve 
VI for n = 0.4, F = 2) and Fig. 4 (the continuous curves are for n = i, the broken curves 
for n = 0.5; i) F = 0, 2) F = I, 3) F = 2]. As may be seen from Fig. 2, the experimental 
points for pseudoplastic fluids are well described by the theoretical curves obtained taking 
into account the wall slip effect. Figure 4 shows that an increase in the slip coefficient 
reduces the thickness of the entrained film. At intermediate withdrawal rates 10 -2 < Ca < 10 
the Newtonian (n = i) and all the pseudoplastic (n < I) fluids have similar dependences in 
the dimensionless complexes Ca, T, and F. From Eqs. (5.2) for n = 1 it follows that the ef- 
fective slip rate Vc = F[3(H - i) + T2][3F(H - i) + H2] -I varies from a minimum v c = FT 2 in 
the zone of constant film thickness (H = I) to a maximum Hs = (3 - T2)/2 + [(3 - T2)2/4 - 
2FT=] I/2 on the stagnation line. 
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PRESSURE FLOW OF LIQUID WHICH CONGEALS ON A PIPE SURFACE 

UNDER CONDITIONS OF DISSIPATIVE HEAT RELEASE 

S. V. Maklakov, A. M. Stolin, 
and S. I. Khudyaev 

UDC 532.78+532.542 

There are many known processes in nature and in engineering where the fl0w of liquid 
is accompanied by a phase transformation. Examples of such processes are the accidental over- 
cooling of pipelines [i], the transport of highly paraffinous petroleum [2], the motion of 
magma along a dike [3], the high-velocity flow of gas past an object [4], or even the elec- 
trical heating of a conductor during phase transformation [5]. The substantial effect of 
volumetric heat release during phase transition is shown in [4, 5]. An important peculiar- 
ity in these examples is the simultaneous interaction of the phase transition with chemical, 
Joule, or dissipative heat release. Earlier consideration has been made of the effect of 
the phase transition on the critical conditions of thermal shock in planar [6] and in cylindrical 
[7] regions and of its hydrodynamic analog, Couette flow [8]. 

This study investigates the peculiarities of the phase transition under conditions of 
viscous liquid pressure flow inside a pipe of circular cross section and of infinite length 
where there exists a given pressure gradient and a given flow rate. Either a constant temper- 
ature or a constant thermal flow is applied to the wall of the pipe. 

It was shown that in all ranges of the parameters for the problem, a steady-state solu- 
tion is achieved. Steady-state temperature and velocity profiles are determined. For a given 
pressure gradient and wall temperature in the quasisteady-state approximation, a plot is given 
for ranges of the parameters corresponding to the characteristic type of flow: a steady-state 
condition with intermediate positioning of the phase boundary, the condition of pipe capping 
(total phase transformation), and the condition of hydrodynamic thermal shock [9]. It was 
shown that for a given thermal flow on the wall the condition for intermediate positioning 
of the phase boundary is absent. 

The peculiarities of flow for a given flow rate are analyzed. In this case, the steady- 
state flow with intermediate positioning of the phase boundary always exists. For a given 
thermal flow on the wall of the pipe it is possible to have flow without the solid phase. 
The flow rate and pressure characteristics are obtained, and the effect of phase transition 
is discussed. 

i. Statement of the Problem. We will consider a phase transition of the first kind 
under the conditions of viscous, Newtonian liquid pressure flow inside a pipe of circular 
cross section and of infinite length whose walls are maintained at a constant temperature 
T o which is less than the temperature of phase T,. Because of cooling, the liquid solidifies 
and a phase division is created on the inner surface at r = r,. The dependence of viscosity 
on temperature goes according to the law of Arrhenius: D = n0 exp (E/RT), where no is a pre- 
exponential factor, E is the initiation energy of viscous flow, R is the universal gas con- 
stant, and T is temperature. 

The equations of motion and heat balance, taking into account dissipative heat release, 
and the boundary conditions, can be written in the form 
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